Charge Transport in High-Energy Hadron Collisions

Paul Stankus, ORNL PANIC 05

The most interesting question at RHIC (IMHO)

Allowing that "the bulk" of hadrons produced in a RHIC A+A collision are from the decay of an extended QGP, then:

How does "the bulk" form?

- →Initial transport?
- →Initial thermalization?

PHOBOS, Nucl. Phys. A 757, 28

Transport of conserved quantities

BRAHMS, Phys Rev Lett 90, 102301 (2003)

Example: Baryon number

How does it get to mid-rapidity?

How does it get to high p_T ?

Cannot be treated easily in pQCD!

PHENIX, Phys. Rev. C 69, 024904 (2004)

Paul Stankus, ORNL

Low-brow review of color strings

Model of a meson

Extension to baryons

Model of a Baryon

Baryon transport combinatoric!

Too many baryons?

Exponential transport *not* observed!

BRAHMS Phys Rev Lett 93 102301 (2004)

Enter the Junction

Montanet, Rossi, Veneziano, Phys Rept. 63 (1980) Kharzeev, Phys Lett **B**378 (1996)

The **Junction**:

A legal QCD object Gluon fields Electrically neutral

New Model of a Baryon

Baryon number transported separately from quarks

What's the big idea?

We can measure baryon transport and charge transport independently and distinguish between different mechanisms:

If
$$\frac{dN^B}{dY} - \frac{dN^{\overline{B}}}{dY} = \frac{\text{Net}}{\text{Baryons}} \neq 0 \text{ then test:}$$

Net
$$\frac{dN^{(+)}}{dY} - \frac{dN^{(-)}}{dY} = 0$$
 Pure junction stopping

Net
$$\frac{dN^{(+)}}{dY} - \frac{dN^{(-)}}{dY} = \frac{Z_{\text{Beam}}}{A_{\text{Beam}}} \left(\frac{dN^B}{dY} - \frac{dN^{\overline{B}}}{dY} \right)$$
 Pure quark stopping

A simple plan

Assume: All charge in π^{\pm} , K^{\pm} , p, pbar

All baryon number in p, n, Λ

Notation: "
$$\pi^+$$
" = $dN^{\pi +}/dY$ " π^{Net} " = π^+ - π^- = $dN^{\pi +}/dY$ - $dN^{\pi -}/dY$

Strategy: Examine RHIC A+A, d+A, p+p, ISR data In *theory* look at N^+ - N^- = π^{Net} + K^{Net} + p^{Net} In *practice* look at $(\pi^{\text{Net}}$ + $K^{\text{Net}})/p^{\text{Net}}$

$$\frac{\pi^{\text{Net}} + K^{\text{Net}}}{p^{\text{Net}}} = -1.00$$
 Junction stopping

stopping

Quark stopping

$$\frac{\pi^{\text{Net}} + K^{\text{Net}}}{p^{\text{Net}}} = \frac{Z}{A} \left(\frac{n^{\text{Net}}}{p^{\text{Net}}} + \frac{\Lambda^{\text{Net}}}{p^{\text{Net}}} \right) - \left(1 - \frac{Z}{A} \right)$$

$$= \frac{Z}{A} \frac{n}{p} \left(1 + \frac{\overline{p}}{p} - \overline{n} / \frac{1}{A} + \frac{\overline{p}}{p} / \frac{\overline{n}}{1 - \overline{p}} / \frac{\overline{n}}{p} \right) + \frac{Z}{A} \frac{\Lambda}{p} \left(1 + \frac{\overline{p}}{p} / \frac{\overline{n}}{\Lambda} / \frac{\overline{n}}{1 - \overline{p}} / \frac{\overline{n}}{p} \right) - \left(1 - \frac{Z}{A} \right)$$

$$= 0.0 \leftrightarrow 0.2 \quad \text{for RHIC Au + Au}$$

Know
$$\overline{\Lambda}/\Lambda \cong \overline{p}/p$$
 Presume $\overline{n}/n \cong \overline{p}/p$
Know $\Lambda/p \cong 0.5$ Presume $n/p = [1 \leftrightarrow (A-Z)/Z = 1.5]$

$$\frac{\pi^{\text{Net}} + K^{\text{Net}}}{p^{\text{Net}}} = \frac{\pi^{+}(1 - \pi^{-}/\pi^{+}) + K^{+}(1 - K^{-}/K^{+})}{p(1 - \overline{p}/p)}$$

PHOBOS PRC 67 021901 (2003)

BRAHMS PRL 90 102301 (2003)

Examine RHIC central Au+Au, Y~0, 200 GeV

PRL 93 102301 (2004)

PRL 94 162301 (2004)

$$\pi^{+} = 290$$
 $K^{+} = 47$ $p = 26$ BRAHMS $\overline{p}/p = 0.74 \pm 0.03$ various

 $K^{-}/K^{+} = 0.95 \pm 0.05$ BRAHMS

 $= 0.95 \pm 0.042$ PHOBOS

 $= 0.95 \pm 0.032$ combined

$$-0.93 \pm 0.032$$
 combined
 $\pi^{-}/\pi^{+} = 1.01 \pm 0.04$ BRAHMS
 $= 1.025 \pm 0.019$ PHOBOS

 $=1.022 \pm 0.017$ combined

$$\frac{\pi^{\text{Net}} + K^{\text{Net}}}{p^{\text{Net}}} = \frac{290(-0.022 \pm 0.017) + 47(0.05 \pm 0.032)}{26(0.26 \pm 0.03)}$$
$$= \frac{(-6.38 \pm 4.93) + (2.35 \pm 1.50)}{6.76 \pm 0.78} = -0.60 \pm 0.82$$

Similar conclusion for RHIC p+p and d+Au data.

11

Conclusions

Inconclusive! at least, with current data

pbar/p measures baryon stopping; ±5% precision needed

 π^{-}/π^{+} measures charge stopping; ±0.5% precision needed

Current RHIC experiments can probably achieve this....

...but how would you design a *new* precision low- p_T experiment?

Next: Fix up this calculation (include Σ^{\pm} , ISR data, μ_{Q} , etc.)

Charge transport vs p_T or Y_T

Control input charges: p+A vs n+A, or

$$^{96}_{40}$$
Zr+ $^{96}_{40}$ Zr